Unbounded Commuting Operators and Multivariate Orthogonal Polynomials

نویسندگان

  • YUAN XU
  • Palle E. T. Jorgensen
چکیده

The multivariate orthogonal polynomials are related to a family of operators whose matrix representations are block Jacobi matrices. A sufficient condition is given so that these operators, in general unbounded, are commuting and selfadjoint. The spectral theorem for these operators is used to establish the existence of the measure of orthogonality in Favard's theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Orthogonal Polynomials and Operator Theory

The multivariate orthogonal polynomials are related to a family of commuting selfadjoint operators. The spectral theorem for these operators is used to prove that a polynomial sequence satisfying a vector-matrix form of the three-term relation is orthonormal with a determinate measure.

متن کامل

The Calogero Model : Integrable Structure and Orthogonal Basis

Abstract. Integrability, algebraic structures and orthogonal basis of the Calogero model are studied by the quantum Lax and Dunkl operator formulations. The commutator algebra among operators including conserved operators and creation-annihilation operators has the structure of the W-algebra. Through an algebraic construction of the simultaneous eigenfunctions of all the commuting conserved ope...

متن کامل

Block Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials

A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.

متن کامل

Commuting difference operators, spinor bundles and the asymptotics of pseudo-orthogonal polynomials with respect to varying complex weights

The paper has three parts. In the first part we apply the theory of commuting pairs of (pseudo) difference operators to the (formal) asymptotics of orthogonal polynomials: using purely geometrical arguments we show heuristically that the asymptotics, for large degrees, of orthogonal polynomial with respect to varying weights is intimately related to certain spinor bundles on a hyperelliptic alg...

متن کامل

Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights

The paper has three parts. In the first part we apply the theory of commuting pairs of (pseudo) difference operators to the (formal) asymptotics of orthogonal polynomials: using purely geometrical arguments we show heuristically that the asymptotics, for large degrees, of orthogonal polynomial with respect to varying weights is intimately related to certain spinor bundles on a hyperelliptic alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010